Join us

Optimize Gemma 3 Inference: vLLM on GKE 🏎️💨

Optimize Gemma 3 Inference: vLLM on GKE 🏎️💨

GKE Autopilot's GPU means business—AI inference tasks don’t stand a chance. Just two arguments and, bam, you’ve unleashed NVIDIA's beastly Gemma 3 27B model, which chugs a massive 46.4GB VRAM. ⚡️ Meanwhile, vLLM squeezes the models with bf16 precision, though optimization requires wrestling with algorithms that could make anyone’s head spin. NVIDIA's double-barrel A100s floor it at 411 Tokens/s, burning through $2.84 million tokens like a hot knife through butter. CPUs? They dawdle—like a sloth trying to sprint. 💸


Only registered users can post comments. Please, login or signup.

Start blogging about your favorite technologies, reach more readers and earn rewards!

Join other developers and claim your FAUN account now!

Avatar

The FAUN

@faun
A worldwide community of developers and DevOps enthusiasts!
User Popularity
3k

Influence

253k

Total Hits

1

Posts