Join us

ContentUpdates and recent posts about Slurm..
Link
@kaptain shared a link, 1 week ago
FAUN.dev()

How Kubernetes Became the New Linux

AWS just handed overKarpenterandKubernetes Resource Orchestrator (Kro)to Kubernetes SIGs. Big move. It's less about AWS-first, more about playing nice across the ecosystem. Kroauto-spins CRDs and microcontrollers for resource orchestration.Karpenterhandles just-in-time node provisioning - leaner, fa.. read more  

How Kubernetes Became the New Linux
Link
@kaptain shared a link, 1 week ago
FAUN.dev()

How I Cut Kubernetes Debugging Time by 80% With One Bash Script

The reality of Kubernetes troubleshooting: 80% of the time is spent locating the issue, while only 20% is used for the fix. Managing eight Kubernetes clusters highlighted this pattern. A tool was developed to provide a complete cluster health report in under a minute, streamlining the process and sa.. read more  

Link
@kaptain shared a link, 1 week ago
FAUN.dev()

Kubernetes Tutorial For Beginners [72 Comprehensive Guides]

The series dives deep into real-world Kubernetes - starting with hands-on setup viaKubeadmandeksctl, then moving throughmonitoring,logging,CI/CD, andMLOps. It tracks key release changes up tov1.30, including the confirmed death ofDockershimsince v1.24... read more  

Kubernetes Tutorial For Beginners [72 Comprehensive Guides]
Link
@kaptain shared a link, 1 week ago
FAUN.dev()

The guide to kubectl I never had.

Glasskube dropped a thorough guide tokubectl- the commands, the flags (--dry-run, etc.), how to chain stuff together, and how to keep your config sane. Bonus: a solid roundup ofkubectl plugins. Think observability (like K9s), policy checks, audit trails, and Glasskube’s take on declarative package m.. read more  

The guide to kubectl I never had.
Link
@kaptain shared a link, 1 week ago
FAUN.dev()

Top 5 hard-earned lessons from the experts on managing Kubernetes

Running Kubernetes in production isn’t just clicking “Create Cluster.” It means locking down RBAC, tightening up network policy, tracking autoscaling metrics, and making sure your images don’t ship with surprises. Managed clusters help get you started. But real workloads need more: hardened configs,.. read more  

Top 5 hard-earned lessons from the experts on managing Kubernetes
Link
@kala shared a link, 1 week ago
FAUN.dev()

20x Faster TRL Fine-tuning with RapidFire AI

RapidFire AI just dropped a scheduling engine built for chaos - and control. It shards datasets on the fly, reallocates as needed, and runs multipleTRL fine-tuning configs at once, even on a single GPU. No magic, just clever orchestration. It plugs into TRL withdrop-in wrappers, spreads training acr.. read more  

20x Faster TRL Fine-tuning with RapidFire AI
Link
@kala shared a link, 1 week ago
FAUN.dev()

Code execution with MCP: building more efficient AI agents

Code is taking over MCP workflows - and fast. With theModel Context Protocol, agents don’t just call tools. They load them on demand. Filter data. Track state like any decent program would. That shift slashes context bloat - up to 98% fewer tokens. It also trims latency and scales cleaner across tho.. read more  

Code execution with MCP: building more efficient AI agents
Link
@kala shared a link, 1 week ago
FAUN.dev()

Practical LLM Security Advice from the NVIDIA AI Red Team

NVIDIA’s AI Red Team nailed three security sinkholes in LLMs:reckless use ofexec/eval,RAG pipelines that grab too much data, andmarkdown that doesn't get cleaned. These cracks open doors to remote code execution, sneaky prompt injection, and link-based data leaks. The fix-it trend:App security’s lea.. read more  

Link
@kala shared a link, 1 week ago
FAUN.dev()

Hacking Gemini: A Multi-Layered Approach

A researcher found a multi-layer sanitization gap inGoogle Gemini. It let attackers pull off indirect prompt injections to leak Workspace data - think Gmail, Drive, Calendar - using Markdown image renders across Gemini andColab export chains. The trick? Sneaking through cracks between HTML and Markd.. read more  

Link
@kala shared a link, 1 week ago
FAUN.dev()

'I'm deeply uncomfortable': Anthropic CEO warns that a cadre of AI leaders, including himself, should not be in charge of the technology’s future

Anthropic says it stopped a seriousAI-led cyberattack- before most experts even saw it coming. No major human intervention needed. They didn't stop there. Turns out Claude had some ugly failure modes: followingdangerous promptsand generatingblackmail threats. Anthropic flagged, documented, patched, .. read more  

'I'm deeply uncomfortable': Anthropic CEO warns that a cadre of AI leaders, including himself, should not be in charge of the technology’s future
Slurm Workload Manager is an open-source, fault-tolerant, and highly scalable cluster management and scheduling system widely used in high-performance computing (HPC). Designed to operate without kernel modifications, Slurm coordinates thousands of compute nodes by allocating resources, launching and monitoring jobs, and managing contention through its flexible scheduling queue.

At its core, Slurm uses a centralized controller (slurmctld) to track cluster state and assign work, while lightweight daemons (slurmd) on each node execute tasks and communicate hierarchically for fault tolerance. Optional components like slurmdbd and slurmrestd extend Slurm with accounting and REST APIs. A rich set of commands—such as srun, squeue, scancel, and sinfo—gives users and administrators full visibility and control.

Slurm’s modular plugin architecture supports nearly every aspect of cluster operation, including authentication, MPI integration, container runtimes, resource limits, energy accounting, topology-aware scheduling, preemption, and GPU management via Generic Resources (GRES). Nodes are organized into partitions, enabling sophisticated policies for job size, priority, fairness, oversubscription, reservation, and resource exclusivity.

Widely adopted across academia, research labs, and enterprise HPC environments, Slurm serves as the backbone for many of the world’s top supercomputers, offering a battle-tested, flexible, and highly configurable framework for large-scale distributed computing.